Wrong, but useful: regional species distribution models may not be improved by range‐wide data under biased sampling

نویسندگان

  • Ahmed El-Gabbas
  • Carsten F Dormann
چکیده

Species distribution modeling (SDM) is an essential method in ecology and conservation. SDMs are often calibrated within one country's borders, typically along a limited environmental gradient with biased and incomplete data, making the quality of these models questionable. In this study, we evaluated how adequate are national presence-only data for calibrating regional SDMs. We trained SDMs for Egyptian bat species at two different scales: only within Egypt and at a species-specific global extent. We used two modeling algorithms: Maxent and elastic net, both under the point-process modeling framework. For each modeling algorithm, we measured the congruence of the predictions of global and regional models for Egypt, assuming that the lower the congruence, the lower the appropriateness of the Egyptian dataset to describe the species' niche. We inspected the effect of incorporating predictions from global models as additional predictor ("prior") to regional models, and quantified the improvement in terms of AUC and the congruence between regional models run with and without priors. Moreover, we analyzed predictive performance improvements after correction for sampling bias at both scales. On average, predictions from global and regional models in Egypt only weakly concur. Collectively, the use of priors did not lead to much improvement: similar AUC and high congruence between regional models calibrated with and without priors. Correction for sampling bias led to higher model performance, whatever prior used, making the use of priors less pronounced. Under biased and incomplete sampling, the use of global bats data did not improve regional model performance. Without enough bias-free regional data, we cannot objectively identify the actual improvement of regional models after incorporating information from the global niche. However, we still believe in great potential for global model predictions to guide future surveys and improve regional sampling in data-poor regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of potential habitat distribution of Artemisia sieberi Besser using data-driven methods in Poshtkouh rangelands of Yazd province

The present study aimed to model potential habitat distribution of A. sieberi, and its ecological requirements using generalized additive model (GAM) and classification and regression tree (CART) in in the Poshtkouh rangelands of Yazd province. For this purpose, pure habitats of the species was delineated and the species presence data was recorded by the systematic-randomize sampling method. Us...

متن کامل

Regional data refine local predictions: modeling the distribution of plant species abundance on a portion of the central plains.

Species distribution models are frequently used to predict species occurrences in novel conditions, yet few studies have examined the consequences of extrapolating locally collected data to regional landscapes. Similarly, the process of using regional data to inform local prediction for species distribution models has not been adequately evaluated. Using boosted regression trees, we examined er...

متن کامل

The effects of climate change on the distribution of an invasive fish in Iran: Gambusia holbrooki (Girard, 1859)

Today, invasive species are considered as one of the major threats to biodiversity and ecosystem functions. The suitable habitats of these species are expected to be expanded under the effects of future climate change hence it is likely to threaten the existence of native species. Consequently, identifying the current and potential distribution range of invasive species is essential for managem...

متن کامل

Predicting species distributions from samples collected along roadsides.

Predictive models of species distributions are typically developed with data collected along roads. Roadside sampling may provide a biased (nonrandom) sample; however, it is currently unknown whether roadside sampling limits the accuracy of predictions generated by species distribution models. We tested whether roadside sampling affects the accuracy of predictions generated by species distribut...

متن کامل

Methods and uncertainties in bioclimatic envelope modelling under climate change

Potential impacts of projected climate change on biodiversity are often assessed using single-species bioclimatic ‘envelope’ models. Such models are a special case of species distribution models in which the current geographical distribution of species is related to climatic variables so to enable projections of distributions under future climate change scenarios. This work reviews a number of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2018